In the winter of 2013-2014, I decided to write up complete solutions to the starred exercises in *Differential Topology* by Guillemin and Pollack. There are also solutions or brief notes on non-starred ones. Please email errata to ceur@college.harvard.edu.

Notation: A neighborhood is always assumed to be an open neighborhood. A graph of a function f is denoted $\Gamma(f)$.

Contents

1 Chapter 1: Manifolds and Smooth Maps
 1.1 Definitions ... 2
 1.2 Derivatives and Tangents .. 4
 1.3 The Inverse Function Theorem and Immersions 6
 1.4 Submersions ... 8
 1.5 Transversality .. 9
 1.6 Homotopy and Stability ... 11
 1.7 Sard’s Theorem and Morse Functions 12
 1.8 Embedding Manifolds in Euclidean Space 14

2 Chapter 2. Transversality and Intersection 16
 2.1 Manifolds with Boundary .. 16
 2.2 Transversality .. 16
1 Chapter 1: Manifolds and Smooth Maps

1.1 Definitions

Exercise 1 (1.1.2). If \(X \subset \mathbb{R}^N, Z \subset X, \) and \(f : X \to \mathbb{R}^m \) is smooth / diffeomorphic, then \(f|_Z \) is also smooth / diffeomorphic.

Solution) It suffices to show the smooth part (then apply it to the inverse map to get diffeomorphism). Fix any \(z \in Z \subset X. \) Since \(f : X \to \mathbb{R}^m \) is smooth, there exists \(z \in U \subset \mathbb{R}^N \) open (i.e. \(X \cap U \) a neighborhood of \(z \in X \)) and \(F : U \to \mathbb{R}^m \) smooth such that \(F = f \) on \(X \cap U \). Now, \(U \cap Z \) is a neighborhood of \(z \in Z \) such that \(F = f|_Z \) on \(Z \cap U. \) □

Exercise 2 (1.1.3). Let \(X \subset \mathbb{R}^N, Y \subset \mathbb{R}^M, Z \subset \mathbb{R}^L, \) and let \(f : X \to Y, g : Y \to Z. \) Then: \(f \) and \(g \) are smooth / diffeomorphism \(\Rightarrow \) \(g \circ f : X \to Z \) is smooth / diffeomorphism.

Solution) It suffices to show the smooth part (diffeomorphism part follows easily). Note that this is true when \(X, Y, Z \) are open subsets of \(\mathbb{R}^N, \mathbb{R}^M, \mathbb{R}^L \) (Chain Rule from calculus). Now fix any \(x \in X, y := f(x). \) We have \(y \in V \subset \mathbb{R}^M \) open with \(G : V \to \mathbb{R}^L \) smooth, and \(x \in U \subset \mathbb{R}^N \) open with \(F : U \to V \) smooth (if necessary by replacing \(U \) with \(U \cap f^{-1}(V) \)), and \(F = f \) on \(X \cap U, G = g \) on \(Y \cap V. \) Then \(G \circ F : U \to \mathbb{R}^L \) is smooth, and \(G \circ F = g \circ f \) on \(X \cap U \) since \(f(X \cap U) \subset (Y \cap V) \) by construction. □

Exercise 3 (1.1.4). Show that any open ball \(B_r(0) \) in \(\mathbb{R}^k \) is diffeomorphic to \(\mathbb{R}^k, \) and hence, if \(X \) is a \(k \)-dimensional manifold then every point in \(X \) has a neighborhood diffeomorphic to \(\mathbb{R}^k. \)

Solution) Consider the maps

\[
B_r(0) \to \mathbb{R}^k, \quad x \mapsto \frac{r x}{\sqrt{r^2 - \|x\|^2}} \quad \text{and} \quad \mathbb{R}^k \to B_r(0), \quad y \mapsto \frac{ry}{\sqrt{r^2 + \|y\|^2}}
\]

They are mutual inverses, and by the previous exercise both are smooth (lots of composition of smooth maps). Lastly, if \(x \in X \) and \(\phi : U \to X \) is local parametrization at \(x, \) then take (for small enough \(r > 0 \)) \(B_r(\phi^{-1}(x)) \subset U \) so that \(\phi|_{B_r} \) is also a local parametrization at \(x. \) With diffeomorphism \(\psi : \mathbb{R}^k \to B_r, \) we have a local parametrization \(\phi|_{B_r} \circ \psi : \mathbb{R}^k \to X \) at \(x. \) □

Exercise 4 (1.1.5). Every \(k \)-dimensional vector subspace \(V \) of \(\mathbb{R}^N \) is a manifold diffeomorphic to \(\mathbb{R}^k, \) all linear maps on \(V \) are smooth, and if \(\phi : \mathbb{R}^k \to V \) is a linear isomorphism, then the corresponding coordinate functions are linear functionals on \(V \) (called linear coordinates).

Solution) Lemma: every linear transformation \(L : \mathbb{R}^n \to \mathbb{R}^m \) is smooth (: \(dL_x = L \forall x \in \mathbb{R}^n \)), and note that any linear map on \(V \) is smooth since it extends to a linear map on \(\mathbb{R}^N. \)

Now, by choosing a basis of \(V \) we have an isomorphism \(\phi : V \to \mathbb{R}^k, \) which we can extend to a linear map \(\tilde{\phi} : \mathbb{R}^N \to \mathbb{R}^k. \) So, \(\phi \) is smooth, \(\phi^{-1} : \mathbb{R}^k \to V \subset \mathbb{R}^N \) (linear) is also smooth, and thus \(V \) is a manifold diffeomorphic to \(\mathbb{R}^k. \)

Let \(\phi := (x_1, \ldots, x_k). \) Since \(x_i = \pi_i \circ \phi, \) each \(x_i \) is a linear functional on \(V \) (projections \(\pi_i : \mathbb{R}^N \to \mathbb{R} \) is linear). □
Exercise 5 (1.1.6, 7, 8). Smooth bijection need not be diffeomorphism. Union of two coordinate axes in \mathbb{R}^2 is not a manifold; hyperboloid in \mathbb{R}^3 defined by $x^2 + y^2 - z^2 = a$, $a > 0$ is a manifold (not when $a = 0$).

Solution) $f : \mathbb{R} \to \mathbb{R}$ via $f(x) = x^3$ is smooth and bijective but $f^{-1}(x) = \sqrt[3]{x}$ is not smooth at $x = 0$. When $(0, 0)$ is removed from $\{x = 0\} \cup \{y = 0\}$ we get four disconnected components, but $\mathbb{R} - \{\ast\}$ has two components, and $\mathbb{R}^n - \{\ast\}$ is connected for $n \geq 2$. Lastly, if H is the hyperboloid, H^+ and H^- can be parametrized by $\mathbb{R}^2 - B_0(0) \to \mathbb{R}^3$ via $(u, v) \mapsto (u, v, \pm \sqrt{u^2 + v^2 - a})$, and for $(x, y, 0) \in H \cap \{z = 0\}$, it also has a local parametrization $B_0(0) \to \mathbb{R}^3$ via $(u, v) \mapsto (\pm \sqrt{a + u^2 - v^2}, u, v)$ (switch x, y if necessary). When $a = 0$, $(0, 0, 0)$ has no neighborhood diffeomorphic to \mathbb{R}^2 (again use connectivity argument).

Exercise 6 (1.1.12,13). Let $S^k \subset \mathbb{R}^{k+1}$ sphere, and $N = (0, \ldots, 0, 1)$ the north pole. Then the stereographic projection $\pi : S^k - \{N\} \to \mathbb{R}^k$ is a diffeomorphism.

Solutions) Direct computation yields the maps explicitly:

$$
\pi : (u_1, \ldots, u_{k+1}) \mapsto \left(\frac{u_1}{1 - u_{k+1}}, \ldots, \frac{u_k}{1 - u_{k+1}} \right)
$$

$$
\pi^{-1} : (x_1, \ldots, x_k) \mapsto \left(\frac{2 x_1}{x_1^2 + \cdots + x_k^2 + 1}, \ldots, \frac{2 x_k}{x_1^2 + \cdots + x_k^2 + 1}, \sqrt{\frac{x_1^2 + \cdots + x_k^2 - 1}{x_1^2 + \cdots + x_k^2 + 1}} \right)
$$

and that π, π^{-1} are smooth follows from [1.1.3] and that they are mutual inverses is checked by direct computation. (This also shows that S^k is a k-dimensional manifold).

Exercise 7 (1.1.14,15). If $f : X \to X'$, $g : Y \to Y'$ smooth, then the product map $f \times g : X \times Y \to X' \times Y'$ defined by $(x, y) \mapsto (f(x), g(y))$ is smooth. Hence, if f, g are diffeomorphisms, $f \times g$ is also a diffeomorphism. Lastly, projection map $X \times Y \to X$ is smooth.

Solution) Note that for $A, A' \subset X$ and $B, B' \subset Y$, $(A \times B) \cap (A' \times B') = (A \cap A') \times (B \cap B') \subset X \times Y$ (NOT true for unions). Also, it is easy to check that $f \times g$ is smooth when X, Y are open subsets ($\cdot : f \times g = (f_1, \ldots, f_N, g_1, \ldots, g_M)$), so taking neighborhoods U, V of X, Y with F, G smooth, $F \times G = f \times g$ on $(X \cap U) \times (Y \cap V)$.

If f, g are diffeomorphisms, $f^{-1} \times g^{-1}$ is smooth inverse of $f \times g$. Finally, $X \times Y \to X$ is smooth since $\mathbb{R}^N \times \mathbb{R}^M \to \mathbb{R}^N$ is smooth (in fact the Jacobian looks like $[I_N \mid 0]$).

Exercise 8 (1.1.16,17). Let $f : X \to Y$ be smooth, and define $\tilde{f} : X \to \Gamma(f)$ by $x \mapsto (x, f(x))$. Then \tilde{f} is a diffeomorphism (if X a manifold so is $\Gamma(f)$).

Solution) Lemma: the diagonal map $\Delta : X \to X \times X$, $x \mapsto (x, x)$ is a diffeomorphism ($\cdot : \Delta : \mathbb{R}^N \to \mathbb{R}^N \times \mathbb{R}^N$ has Jacobian $[I_N \mid I_N]^t$ so it is smooth; the inverse map is same as projection so it is smooth). Now, using the lemma and the previous exercise, $\tilde{f} = (\text{Id} \times f) \circ \Delta$ is smooth. The inverse map is same as the projection map, so it is smooth, so \tilde{f} is a diffeomorphism.
Exercise 9 (1.1.18). Let $0 < a < b$. The function $f : \mathbb{R} \to \mathbb{R}$ defined by

$$f(x) = \begin{cases}
 e^{-1/x^2} & x > 0 \\
 0 & x \leq 0
\end{cases}$$

is smooth. $g(x) := f(x - a)f(b - x)$ is a smooth map, and is positive on (a,b) and zero elsewhere. Moreover, $h(x) := \int_{x}^{\infty} gdx$ is also smooth with the property that $h(x) = 0$ for $x \leq a$, $h(x) = 1$ for $x \geq b$, and $0 < h'(x) < 1$ for $x \in (a,b)$ (h is also non-decreasing). Lastly, construct a smooth function $H : \mathbb{R}^k \to \mathbb{R}$ that is 1 on B_a, 0 on $\mathbb{R}^k - B_b$, and $(0,1)$ otherwise.

Solution) f is smooth: for $x > 0$ the ith derivative of f is of the form (rational polynomial)e^{-1/x^2} hence $\lim_{x \to 0} f^{(i)}(x) = 0, \forall i = 0, 1, \ldots$. Addition/multiplication by a constant and $(x,y) \mapsto xy$ are smooth maps, so g is smooth with desired property. Lastly, h is smooth with desired property by Fundamental Theorem of Calculus. Now note that $\mathbb{R}^k \to \mathbb{R}, x \mapsto ||x||$ is smooth, so $x \mapsto 1 - h(||x||)$ is the desired function H. □

1.2 Derivatives and Tangents

Note: When the context is clear, X, Y are assumed to be manifolds (of dimension $\mathbb{R}^k, \mathbb{R}^l$ residing in $\mathbb{R}^N, \mathbb{R}^M$).

Exercise 10 (1.2.1,2). Let $X \subset Y$ be a submanifold, and $j : X \hookrightarrow Y$ be the inclusion map. Then $\forall x \in X$, $dj_x : T_x(X) \to T_x(Y)$ is injective—in fact it is an inclusion. If U is an open subset of a manifold X, $T_x(U) = T_x(X)$ for $x \in U$.

Solution) Lemma: if X is a manifold, $x \in X$, and $\phi : U \to X$ is a local parametrization with $\phi(0) = x$, then $(d\phi_0)^{-1} = d(\phi^{-1})_{x}$ (∴ Exercise [1.2.4]). Now, let $x \in X$, $\phi : U \to X$, $\psi : V \to Y$ be local parametrizations ($U \subset \mathbb{R}^k, V \subset \mathbb{R}^l$ open, $\phi(0) = x = \psi(0)$). Note that $\psi^{-1} \circ j \circ \phi = \psi^{-1} \circ \phi$, and so we have $dj_x = d\psi_0 \circ d(\psi^{-1} \circ \phi)_0 \circ (d\phi_0)^{-1} = d\psi_0 \circ d(\psi^{-1})_y \circ d\phi_0 \circ (d\phi_0)^{-1} = \text{Id}$ (∴ first equality by definition, second by chain rule, third by lemma). □

Exercise 11 (1.2.3+α). Let $V \subset \mathbb{R}^N$ be a vector subspace. Then $\forall x \in V$, $T_x(V) = V$. Moreover, if $L : V \to \mathbb{R}^M$ is a linear map, then for $x \in V$, $dL_x = L$.

Solution) By choosing basis we have linear isomorphism $\phi : \mathbb{R}^k \to V$, and $\phi = d\phi_u$ for $\phi(u) \in V$, hence $T_x(V) = V$. The remaining statement follows from [Exercise 17]; extend L to a linear map on the whole \mathbb{R}^N, then apply [Exercise 17] and $T_x(V) = V$. □

Exercise 12 (1.2.4). Let $f : X \to Y$ is a (local) diffeomorphism and $x \in X, y := f(x)$, then the linear map $df_x : T_x(X) \to T_y(Y)$ is an isomorphism. In fact, $(df_x)^{-1} = df(f^{-1})_y$.

Solution) Let f^{-1} be the smooth (local) inverse map. Obviously, $d\text{Id} = \text{Id}$, so from the chain rule we have $\text{Id} = d(f \circ f^{-1})_y = df_x \circ d(f^{-1})_y$, and likewise, $d(f^{-1})_y \circ df_x = \text{Id}$. □
Exercise 13 (1.2.8). What is the tangent space to the hyperboloid defined by $x^2 + y^2 - z^2 = a$ at $(\sqrt{a}, 0, 0)$ $(a > 0)$?

Solution) As in [1.1.8], we have a local parametrization $\phi : B_a(0) \to \mathbb{R}^3$ given by $(u, v) \mapsto (\sqrt{a + u^2 - v^2}, u, v)$, and $[d\phi] = \begin{bmatrix} u(a + u^2 - v^2)^{-1/2} & -v(a + u^2 - v^2)^{-1/2} \\ 1 & 0 \\ 0 & 1 \end{bmatrix}$. And so $[d\phi(\sqrt{a}, 0, 0)] = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}$, and thus the tangent space is the y, x-plane, as expected. □

Exercise 14 (1.2.9). Let X, Y manifolds, $\pi : X \times Y \to X$ be the projection map, and for $y \in Y$ let $f^y : X \to X \times Y$ be a smooth injection defined by $x \mapsto (x, y)$. Then

1. $T_{(x,y)}(X \times Y) = T_x(X) \times T_y(Y)$
2. $d\pi_{(x,y)} : T_x(X) \times T_y(Y) \to T_x(X)$ is also a projection $(v, w) \mapsto v$.
3. f^y is diffeomorphism onto its image and $d(f^y)_x : v \mapsto (v, 0)$.

Lastly, if $f : X \to X'$, $g : Y \to Y'$ are smooth maps, then $d(f \times g)(x, y) = df_x \times dg_y$.

Solution) Let $(x, y) \in X \times Y$ and $\phi \times \psi : U \times V \to X \times Y$ be local parametrization. Now (1.) follows from the following lemma:

Lemma: Let U_1, U_2 be open subset of $\mathbb{R}^n, \mathbb{R}^m$, and $g_1 \times g_2 : U_1 \times U_2 \to \mathbb{R}^n \times \mathbb{R}^m$ is smooth, then $dg_{(u_1, u_2)} = d(g_1)_{u_1} \times d(g_2)_{u_2}$ (as $[dg_{(u_1, u_2)}] = \begin{bmatrix} [d(g_1)_{u_1}] & 0 \\ 0 & [d(g_2)_{u_2}] \end{bmatrix}$). For (2.),

$$
\begin{array}{ccc}
X \times Y & \xrightarrow{\pi} & X \\
\phi \times \psi & \uparrow & \phi \\
U \times V & \xrightarrow{h} & U
\end{array}
$$

we note that the map $h := \phi^{-1} \circ \pi \circ (\phi \times \psi) : U \times V \to U$ is also the projection map $(u, v) \mapsto u$. So, $d\pi_{(x,y)} = d\phi_0 \circ dh_{(0,0)} \circ d(\phi \times \psi)^{-1}_0$ is easily computed to be the projection, as desired. Now for (3.), f^y is diffeomorphism since $(f^y)^{-1}$ is just projection, and we have the diagram

$$
\begin{array}{ccc}
X & \xrightarrow{f^y} & X \times y \subset X \times Y \\
\phi & \uparrow & \phi \times \psi \\
U & \xrightarrow{h} & U \times 0 \subset U \times V
\end{array}
$$

It’s easy to see that $dh_0 = \text{Id}_k \times 0$. So, $d(f^y)_x(v) = (d\phi_0 \times d\psi_0) \circ d\phi_0^{-1}(v) = (v, 0)$, as desired.

Finally, we show $d(f \times g)(x, y) = df_x \times dg_y$. Let $\pi_1 : X \times Y \to X$, $\pi_2 : X \times Y \to Y$ be projections, and $j_1 : X' \to \mathbb{R}^{N+M'}$, $j_2 : Y' \to \mathbb{R}^{N'+M'}$ be smooth maps $x' \mapsto (x', 0)$, $y' \mapsto (0, y')$. Now, note that $f \times g = j_1 \circ f \circ \pi_1 + j_2 \circ g \circ \pi_2$. So, using (1., 2., 3.) and chain rule, we have $d(f \times g)(x, y)(u, v) = (df_x(u), dg_y(v))$, as desired. □
Exercise 15 (1.2.10,11). Let \(f : X \to Y \) smooth map of manifolds and define \(\tilde{f} : X \to X \times Y \) by \(x \to (x, f(x)) \), then \(df_x(v) = (v, df_x(v)) \), and hence \(T_{(x,f(x))}(\Gamma(f)) \) is the graph of \(df_x : T_x(X) \to T_{f(x)}(Y) \).

Solution) Lemma: if \(\Delta : X \to X \times X \) is the diagonal map, then \(d\Delta_x(v) = (v,v) \) \((\therefore h : U \to U \times U \) has \(dh_0 = [I_k | I_k] \)). Now, \(\tilde{f} = (\text{Id} \times f) \circ \Delta \), so the lemma and [Exercise 1.2.9] implies that \(\tilde{f}_x(v) = (v, df_x(v)) \), as desired. \(\square \)

Exercise 16 (1.2.12). A curve on a manifold \(X \) is a smooth map \(c : I \to X, t \mapsto c(t) \), where \(I \subset \mathbb{R} \) interval. The velocity vector of the curve \(c \) at time \(t_0 \), denoted \(dc_{t_0}/dt \) or \(\dot{c}(t_0) \), is defined as \(dc_{t_0}(1) \in T_{x_0}(X) \) where \(x_0 = c(t_0) \). Note that when \(X = \mathbb{R}^k \) and \(c(t) = (c_1(t), \ldots, c_k(t)) \), then \(dc_0 = (c'_1(t_0), \ldots, c'_k(t_0)) \). Every vector in \(T_x(X) \) is the velocity vector of some curve in \(X \), and conversely.

Solution) First, it is obvious that tangent space at a point on an interval is \(\mathbb{R} \), so \(dc_{t_0} : \mathbb{R} \to T_{x_0}(X) \), and we thus we have the converse.

Now fix any \(x \in X \) and \(v \in T_x(X) \). Let \(\phi : U \to X \) be local parametrization around \(x \), \(\phi(0) = x \), and WLOG \(U = \mathbb{R} \) (by [Exercise 1.1.4]). By definition \(v = d\phi_0(w) \) for some \(w = (w_1, \ldots, w_k) \in \mathbb{R}^k \). Now, define \(\tilde{c} : \mathbb{R} \to \mathbb{R}^k \) by \(t \mapsto (w_1t, \ldots, w_kt) \), and \(c := \phi \circ \tilde{c} \). Now, \(dc_0 = d\phi_0 \circ \tilde{c}_0 \) and so \(dc_0(1) = d\phi_0(w) \), as desired. \(\square \)

Exercise 17 (made-up). Let \(f : X \to Y \) be smooth map of manifolds, \(x \in X \), and let \(x \in U \subset \mathbb{R}^N \) open and \(F : U \to \mathbb{R}^M \) smooth such that \(F = f \) on \(X \cap U \). Then \(df_x = dF_x|_{T_x(X)} : T_x(X) \to T_y(Y) \).

Solution) WLOG, we have \(\phi : \tilde{U} \to X \cap U \) and \(\psi : \tilde{V} \to Y \cap V \) local parametrizations (diffeomorphisms) such that the following commutes (with \(h := \psi^{-1} \circ f \circ \phi, \phi(u) = x, \psi(v) = f(x) \))

\[
\begin{array}{ccc}
X \cap U & \xrightarrow{f} & Y \cap V \\
\phi \uparrow & & \uparrow \psi \\
\tilde{U} & \xrightarrow{h} & \tilde{V}
\end{array}
\]

Now since \(f = F \) on \(X \cap U \), \(h = \psi^{-1} \circ F \circ \phi \), and hence \(dh_u = d\psi_u^{-1} \circ dF_x \circ d\phi_u \), we have \(df_x = Id_{\mathbb{R}^M} \circ dF_x \circ Id_{T_x(X)} \), and hence \(df_x = dF_x|_{T_x(X)} \) as desired. In fact, \(dF_x \) is a linear extension of the linear map \(df_x \). \(\square \)

1.3 The Inverse Function Theorem and Immersions

Exercise 18 (1.3.2). Suppose \(Z \subset X \) \(l \)-dimensional submanifold, \(z \in Z \). Then there exists a local coordinate system \(\{x_1, \ldots, x_k\} \) on a neighborhood \(U \) of \(z \) in \(X \) such that \(Z \cap U \) is defined by the equations \(x_{l+1}, \ldots, x_k = 0 \).
Solution) Since the inclusion map \(j : Z \hookrightarrow X \) is an immersion, by Local Immersion Theorem, we have parametrizations around \(z \) such that:

\[
\begin{array}{ccc}
Z & \xrightarrow{j} & X \\
\phi \uparrow & & \psi \\
V & \text{can. imm.} & \bar{U}
\end{array}
\]

commutes, with \(\phi(0) = z = \psi(0) \) and \(\bar{U} = V \times V' \). Now, let \(\psi(\bar{U}) := U \subset X \) and \(\psi^{-1} = (x_1, \ldots, x_k) \), then \(Z \cap U = \{v \in U \mid x_{i+1}(v) = 0, \ldots, x_k(v) = 0\} \), as desired. \(\square \)

Exercise 19 (1.3.3,4,5). If \(f : \mathbb{R} \to \mathbb{R} \) is a local diffeomorphism, then \(\text{Im}(f) \) is an open interval and \(f : \mathbb{R} \to \text{Im}(f) \) is a diffeomorphism. Such is not true for \(h : \mathbb{R}^2 \to \mathbb{R}^2 \) local diffeomorphism.

Solution) Lemma[1.3.5]: if \(f \) is injective local diffeomorphism, its image is open in \(Y \), and it is diffeomorphism onto its image (\(\cdot \) : open: local homeomorphisms are open maps, and bijective local diffeomorphism admits smooth inverse). \(\mathbb{R} \) is connected thus so is \(\text{Im}(f) \), hence \(\text{Im}(f) \) is an interval, and \(f \) local diffeomorphism implies that \(f \) is an open map and that \(f'(x) \neq 0 \) (and hence \(f \) is injective).

This is not true for \(\mathbb{R}^2 \); consider \(h = g \times \arctan \) where \(g : \mathbb{R} \to S^1 \), \(t \mapsto (\cos 2\pi t, \sin 2\pi t) \) (\(h \) is not injective). \(\square \)

Exercise 20 (1.3.6). Let \(f : X \to Y, g : Y \to Y' \) be immersions, \(Z \subset X \) submanifold. Then \(f \times g, g \circ f, \) and \(f|Z \) are immersions, and if \(\dim X = \dim Y \), then \(f \) is in fact a local diffeomorphism.

Solution) \(f \times g \) is immersion by [Exercise 1.2.9] and \(g \circ f \) immersion by chain rule. If \(j : Z \hookrightarrow X \) is inclusion map, \(f|Z = f \circ j \), so \(f|Z \) is immersion. If \(\dim X = \dim Y \), \(f \) is local diffeomorphism by Local Immersion Theorem. \(\square \)

Exercise 21 (1.3.7). Define \(g : \mathbb{R} \to S^1, t \mapsto (\cos 2\pi t, \sin 2\pi t) \) (local diffeomorphism) and \(G := g \times g : \mathbb{R}^2 \to S^1 \times S^1 \), and let \(L \subset \mathbb{R}^2 \) a line with irrational slope. Then \(G|_L \) is an injective local diffeomorphism, but its image is not a submanifold of \(S^1 \times S^1 \).

Solution) \(G : (s,t) \mapsto (\cos 2\pi s, \sin 2\pi s, \cos 2\pi t, \sin 2\pi t) \), and WLOG let \(L \) be defined by \(t = \alpha s, \alpha \in \mathbb{R} - \mathbb{Q} \). If \(G(s_1, \alpha s_1) = G(s_2, \alpha s_2) \), then \(s_1 - s_2 \in \mathbb{Z} \) and \(\alpha(s_1 - s_2) \in \mathbb{Z} \), which implies that \(s_1 = s_2 \) since \(\alpha \) is irrational. Moreover, since \(\{\alpha n\}_{n \in \mathbb{N}} \) dense in \(\mathbb{R}/\mathbb{Z} \), we have that \(\text{Im}(G|_L) \) is dense in \(S^1 \times S^1 \), so \(\text{Im}(G|_L) \) cannot be a submanifold. \(\square \)

Exercise 22 (1.3.9). Let \((x_1, \ldots, x_N) \) be standard coordinate functions on \(\mathbb{R}^N \), and \(X \subset \mathbb{R}^N \) be a \(k \)-dimensional manifold. Then any \(x \in X \) has a neighborhood on which the restrictions of some \(k \) coordinate functions \(x_{i_1}, \ldots, x_{i_k} \) form a local coordinate system.

Now for simplicity assume that \(x_1, \ldots, x_k \) form a local coordinate on a neighborhood \(V \) of \(x \in X \). Then \(\exists g_{k+1}, \ldots, g_N : U \subset \mathbb{R}^k \to \mathbb{R} \) smooth such that \(V = \Gamma(g) \) where \(g = (g_{l+1}, \ldots, g_N) : U \to \mathbb{R}^{N-k} \), and thus every manifold is locally a graph of a smooth function.
Solution) Choose a basis \(v_1, \ldots, v_k \in \mathbb{R}^N \) of \(T_x(X) \), then the matrix \([v_1 \cdots v_k] \) has rank \(k \), so it has \(k \) linearly independent rows, say \(i_1, \ldots, i_k \). Now, let \(\pi : \mathbb{R}^N \to \mathbb{R}^k \) be projection defined by \((x_1, \ldots, x_N) \mapsto (x_{i_1}, \ldots, x_{i_k})\), then \(d\pi|_{T_x(X)} : T_x(X) \to \mathbb{R}^k \) is an isomorphism by construction, hence by IVT \(\pi|_X : X \to \mathbb{R}^k \) is a local diffeomorphism. Now, assume \(i_1, \ldots, i_k = 1, \ldots, k \) and let \(\bar{\pi} := \pi|_X \). \(\bar{\pi} : X \to \mathbb{R}^k \) is a diffeomorphism on \(x \in V \subset X \), and the smooth inverse \(\bar{\pi}^{-1} : U \to V \) is of form \(\text{Id} \times g \), and hence the result as desired. \(\square \)

Exercise 23 (1.3.10). **Generalized IVT:** Let \(f : X \to Y \) be smooth map that is injective on a compact submanifold \(Z \subset X \), and suppose \(\forall x \in Z, df_x : T_x(X) \to T_{f(x)}(Y) \) is isomorphism. Then \(f \) maps \(Z \) diffeomorphically on \(f(Z) \), and in fact, maps an open neighborhood of \(Z \) in \(X \) diffeomorphically onto an open neighborhood of \(f(Z) \) in \(Y \). IFT is when \(Z \) is a single point.

Solution Since \(df_x \) is an isomorphism for all \(x \in Z \), for each \(x \in Z \) there exists \(U_x \) on which \(f|_{U_x} \) is a diffeomorphism. \(\{U_x\} \) is a cover of \(X \), hence we choose a finite subcover \(U = \bigcap U_i \supset Z \) (\(X \) is compact). On \(U \), \(f \) is a local diffeomorphism, so only need show that \(f \) is injective on some open set \(V \) containing \(Z \) (then \(f \) is injective local diffeomorphism on \(V \cap U \), hence a diffeomorphism).

Suppose \(V \) does not exist; then taking consecutively smaller \(\epsilon \)-neighborhoods \(Z^\epsilon \) of \(Z \), we obtain a sequence \(\{a_i\}, \{b_i\} \) such that \(a_i \neq b_i \) but \(f(a_i) = f(b_i) \). Passing through subsequences, \(a_i \to a \) and \(b_i \to b \) (both converge) since WLOG they all belong to some \(Z^\epsilon \) for which \(\bar{Z}^\epsilon \) is compact. Moreover, by construction the limit point is on \(Z \) and hence \(a = b = \bar{z} \) since \(f \) is injective on \(Z \). However, this implies that \(f \) cannot be a local diffeomorphism at \(\bar{z} \). Contradiction. \(\square \)

1.4 Submersions

Exercise 24 (1.4.1). If \(f : X \to Y \) is a submersion and \(U \) is open in \(X \), then \(f(U) \) is open in \(Y \).

Solution Fix any \(y \in f(U) \); we need show \(\exists V \in Y \) open in \(Y \) such that \(V \subset f(U) \). Pick \(x \in f^{-1}(y) \), then by local submersion theorem we have the following commutative diagram

\[
\begin{array}{ccc}
X & \xrightarrow{f} & Y \\
\phi \uparrow & & \uparrow \psi \\
\bar{V} \times \bar{U} & \xrightarrow{\pi} & V \\
\end{array}
\]

with \(\phi(\bar{V} \times \bar{U}) \subset U \) and \(\psi(\bar{U}) := V \), and \(V \) is as desired. \(\square \)

Exercise 25 (1.4.2). Let \(X \) compact and \(Y \) connected, then every submersion \(f : X \to Y \) is surjective; hence, there exist no submersions of compact manifolds into Euclidean spaces.

Solution Clearly, \(Y = f(X) \cup (Y - f(X)) \), so it suffices to show that \(Y - f(X) \) is both open and closed in \(Y \). \(f(X) \) is compact in \(Y \) since \(X \) is compact, hence \(f(X) \) is closed in \(Y \); \(X \) is open in \(X \), of by previous problem \(f(X) \) is open in \(Y \). Now, if \(f : X \to \mathbb{R}^m \) is a submersion then \(f \) is surjective, which is contradiction to \(\mathbb{R}^m \) not being compact. \(\square \)
Exercise 26 (1.4.5,6). Example: Let \(f : \mathbb{R}^3 \to \mathbb{R}, (x,y,z) \mapsto x^2 + y^2 - z^2, a,b \) both positive or negative. Then 0 is the only critical value of \(f \), and \(f^{-1}(a), f^{-1}(b) \) are diffeomorphic. More generally, let \(p \) be any homogeneous polynomial in \(k \) variables, then \(p^{-1}(a) (a \neq 0) \) is a \(k-1 \)-dimensional submanifold of \(\mathbb{R}^k \), and \(a > 0 \) ones are all diffeomorphic, as are \(a < 0 \) ones.

Solution) Lemma: \(p(x_1, \ldots, x_k) \) homogeneous of order \(m \), then \(\sum_{i=1}^{k} x_i \frac{\partial p}{\partial x_i} = m \cdot p \). The lemma implies that 0 is the only critical value of \(p \). Diffeomorphisms are made by scaling (note how \(m \) being odd or even makes a small difference). □

Exercise 27 (1.4.7). Suppose \(y \) is a regular value of \(f : X \to Y \), \(X \) compact, and \(\dim X = \dim Y \). Then \(f^{-1}(y) = \{ x_1, \ldots, x_n \} \) (finite), and there exists \(U \in y \) open in \(Y \) such that \(f^{-1}(U) = V_1 \cup \cdots \cup V_n \) where \(V_i \) is open neighborhood of \(x_i \) and \(f|_{V_i} : V_i \to U \) is a diffeomorphism \((\forall i = 1, \ldots, n) \).

Solution) Note that \(y \) regular and \(\dim X = \dim Y \) implies that \(f \) is local diffeomorphism at any \(x \in f^{-1}(y) \). If \(f^{-1}(y) \) is not finite, it contains a limit point \((\cdot : X \) compact), say \(x' \in f^{-1}(y) \), but \(f \) cannot be local diffeomorphism at \(x' \) (not injective). Now since \(f \) is local diffeomorphism at \(x_1, \ldots, x_n \), we can construct desired \(U \) and \(V_i \)'s by taking finite intersections. □

Exercise 28 (1.4.10,11). Tangent space to \(O(n) \) at identity \(I \) is the space of skew symmetric matrices. The group \(SL(n) \) is a (sub)manifold of \(M(n) \) and is moreover a Lie group, and the tangent space to \(SL(n) \) at the identity \(I \) is \(\{ H \in M(n) : \text{Tr}(H) = 0 \} \).

Solution) Recall \(O(n) = f^{-1}(I) \) where \(f : M(n) \to S(n), A \mapsto AA^t \). So, \(T_I(O(n)) = \ker df_I \), and since \(df_I : M(n) \to S(n), H \mapsto HH^t + HH^t = H^t + H, T_I(O(n)) = \{ H \in M(n) : H = -H^t \} \), as desired. \(SL(n) = \det^{-1}(1) \) where \(\det : M(n) \to \mathbb{R}, H \mapsto \det H, \) and 1 is a regular value of \(\det \) by [Exercise 1.4.6]. Moreover, matrix multiplication and inversion is a smooth map (Cramer’s rule), so \(SL(n) \) is a Lie group. Finally, we compute \(d \det_I : M(n) \to \mathbb{R} : \)

\[
\lim_{t \to 0} \frac{\det(I + tH) - \det(I)}{t} = \lim_{t \to 0} \frac{O(t^2) + \sum_{i=0}^{n} (tH)_{ii} + 1 - 1}{t} = \text{Tr}(H)
\]

and hence the desired result about tangent space to \(SL(n) \) at \(I \). □

Exercise 29 (1.4.13). (skip: this is linear algebra)

1.5 Transversality

Note: When the context is clear given \(x \) on \(X \) a manifold, we will not distinguish \(X \) as a whole manifold and the open neighborhood of \(x \) in \(X \) since the tangent space at \(x \) turns out same (will write \(X \) for both).

Exercise 30 (1.5.1,2). Examples of transversal & non-transversal intersection of linear spaces:

a. the \(xy \) plane and the \(z \)-axis in \(\mathbb{R}^3 \): transversal

b. the \(xy \) plane and the plane spanned by \(\{(3,2,0),(0,4,-1)\} \) in \(\mathbb{R}^3 \): transversal

9
c. the plane spanned by \{(1,0,0),(2,1,0)\} and the y axis in \(\mathbb{R}^3\): not transversal

d. \(\mathbb{R}^k \times \{0\}\) and \(\{0\} \times \mathbb{R}^l\) in \(\mathbb{R}^{n}\): transversal if \(n \leq k + l\).

e. \(V \times \{0\}\) and the diagonal in \(V \times V\): transversal

f. symmetric and skew symmetric matrices in \(M(n)\): transversal

Solution) All of the above are easy to check with the following lemma:

Lemma: if \(V\) and \(W\) are linear subspaces of \(\mathbb{R}^n\), then \(V \cap W\) means \(V + W = \mathbb{R}^n\) (\(\because [\text{Exercise 1.2.3}])

Exercise 31 (1.5.4). Let \(X\) and \(Z\) be transversal submanifolds of \(Y\), then for \(y \in X \cap Z\),

\[T_y(X \cap Z) = T_y(X) \cap T_y(Z)\]

Solution) We have \(V \subset Y\) open such that \(X \cap V = g^{-1}(0), Z \cap V = h^{-1}(0)\), for \(g = (g_1, \ldots, g_k) : V \to \mathbb{R}^k, h = (h_1, \ldots, h_l) : V \to \mathbb{R}^l\). Then \((X \cap Z) \cap V = f^{-1}(0)\) where \(f = (g \times h) \circ \Delta : V \to \mathbb{R}^{k+l}\) (N.B. 0 is regular value for \(f\) by transversality). Moreover, \(df_y : T_y(Y) \to \mathbb{R}^{k+l}, v \mapsto (dg_y(v), dh_y(v))\) (\(\because [\text{Exercise 1.2.3, 10}]\)). And since \(\ker df_y = \ker dg_y \cap \ker dh_y\), we have \(T_y(X \cap Z) = \ker df_y = \ker dg_y \cap \ker dh_y = T_y(X) \cap T_y(Z)\), as desired. □

Exercise 32 (1.5.5). Let \(f : X \to Y, Z \subset Y\) submanifold, \(f \cap Z\), and \(W := f^{-1}(Z)\). Then \(T_x(W)\) is the preimage of \(T_{f(x)}(Z)\) under \(df_x : T_x(X) \to T_{f(x)}(Y)\), i.e. \(T_x(f^{-1}(Z)) = df_x^{-1}(T_{f(x)}(Z))\)

Solution) As in the proof, we have open neighborhoods \(U, V\) in \(X, Y\) around \(x, f(x)\) such that \(U \overset{f}{\to} V \overset{g}{\to} \mathbb{R}^l\) and \(Z \cap V = g^{-1}(0), f^{-1}(Z) \cap U = (g \circ f)^{-1}(0)\). Now, noting \(T_{f(x)}(Z) = \ker dg_{f(x)}\), we have \(T_x(Z) = \ker df_x = \ker dg_y \cap \ker dh_y\), as desired. (This implies [Exercise 1.5.4] \(f \circ i : X \to Y\) and \(di_x\) is just inclusion). □

Exercise 33 (1.5.7). \(X \overset{f}{\to} Y \overset{g}{\to} Z\) smooth maps of manifolds, \(W \subset Z\) submanifold such that \(g \cap W\). Then \(f \cap g^{-1}(W)\) if and only if \((g \circ f)\cap W\).

Solution) Fix any \(x \in (g \circ f)^{-1}(W)\), and \(y := f(x), z := g(y)\). Note that since \(g \cap W\), \(dg_y(T_y(Y)) + T_x(W) = T_y(Z)\).

\((g \circ f)\cap W\) we need show \(\text{Im}(dg_y \circ df_x) + T_x(W) = T_y(Z)\). Let \(\tilde{w} \in T_x(Z)\) be given. \((g \cap W)\) implies \(\exists u \in T_y(Y), v \in T_x(W)\) such that \(dg_y(u) + v = \tilde{w}\). Moreover, \((g \cap W)\), so \(T_y(Y) = T_x(W) + (g^{-1}(W))\) \(= \text{Im}(dx_y) + T_y(T_y(Z))\) (\(\because [\text{Exercise 1.5.5}]\)), hence there exists \(\tilde{u} \in T_x(X)\) and \(v' \in T_y(Z)\) such that \(df_x(\tilde{u}) + v' = u\). Finally, we see that then \((dg_y \circ df_x)(\tilde{u}) + v' = \tilde{w}\), as desired.

\((g \circ f)\cap W\) we need show \(\text{Im}(df_x + dg_y^{-1}(T_x(W))) = T_y(Y)\). Again, fix a \(\tilde{w} \in T_y(Y)\). Note the existence of \(u \in T_x(X)\) such that \((dg_y \circ df_x)(u) + w = dg_y(\tilde{w})\), and moreover, \(dg_y(df_x(u - \tilde{w})) \in T_x(W)\) is guaranteed by \((g \circ f)\cap W\). □

Exercise 34 (1.5.9). Let \(V\) be a vector space, \(\Delta\) the diagonal of \(V \times V\), \(A : V \to V\) linear map, and \(W = \Gamma(A)\). Then \(W \cap \Delta\) if and only if 1 is not an eigenvalue of

Solution) Since \(\Delta\) and \(W\) are both vector subspaces of \(V \times V\), \(W \cap \Delta\) is equivalent to \(W + \Delta = V \times V\). Fix an arbitrary \((u, v) \in V \times V\), then if we can always find \((v_1, v_1) \in \Delta, (v_2, Av_2) \in W\) such that \(v_1 + v_2 = u, v_2 + Av_2 = v\) if and only if \((A - I)\) is invertible. □
Exercise 35 (1.5.10). Let \(f : X \to X \) be a smooth map with fixed point \(x \) (i.e. \(f(x) = x \)). If \(1 \) is not an eigenvalue of \(df_x : T_x(X) \to T_x(X) \), then \(x \) is called a **Lefschetz fixed point of** \(f \), and \(f \) is **Lefschetz map** if all its fixed points are Lefschetz. If \(X \) is compact and \(f \) is Lefschetz, then \(f \) has only finitely many fixed points.

Solution) Let \(\Delta_X \) be the diagonal of \(X \times X \), respectively. We wish to show that \(\Delta_X \cap \Gamma(f) \) is finite. **Claim:** it suffices to show \(\exists \Gamma(f) \). If it is so, then \(\Delta_X \cap \Gamma(f) \subset X \times X \) is a submanifold of dimension 0, since \(\dim \Delta_X = \dim \Gamma(f) = \dim X \) (\text{by Exercise 1.1.16,17}). Now, \(X \times X \) is compact so its 0-dimensional submanifold is finite (if not then it has a limit point, which does not admit a neighborhood diffeomorphic to a point).

Now we show \(\Delta_X \cap \Gamma(f) \). Fix any \(x \in \Delta_X \cap \Gamma(f) \), and let \(\Delta_Y \) be the diagonal of \(T_x(X) \times T_x(X) \). Then by [Exercise 1.5.9] we have \(T(x,x)(\Delta_X + T(x,x)(\Gamma(f))) = \Delta_Y + \Gamma(df_x) = T_x(X) \times T_x(X) = T_x(X \times X) \) (first equality by [Exercise 1.2.10,10]). \(\Box \)

1.6 Homotopy and Stability

Exercise 36 (1.6.1,2). Suppose \(f_0 \sim f_1 \) (homotopic), then \(\exists \tilde{F} : X \times I \to Y \) homotopy such that \(\tilde{F}(x,t) = f_0(x) \ \forall t \in [0,1/4] \) and \(\tilde{F}(x,t) = f_1(x) \ \forall t \in [3/4,1] \). Hence, homotopy is an equivalence relation.

Solution) By [Exercise 1.1.18], there exists a function \(h : \mathbb{R} \to \mathbb{R} \) such that \(h(x) = 0 \) on \(x \leq 1/4 \) and \(h(x) = 1 \) on \(x \geq 3/4 \). Now, if \(F \) is the homotopy between \(f_0, f_1 \), set \(\tilde{F} = F \circ (\text{Id} \times h) \).

Now we show equivalence relation. Let \(F,G \) be homotopies for \(f \sim g, g \sim h \). Then define \(H : X \times [0,7/4] \to Y \) by

\[
H(x,t) = \begin{cases}
\tilde{F}(x,t) & t \in [0,1] \\
\tilde{G}(x,t-3/4) & t \in [3/4,7/4]
\end{cases}
\]

Then \(H \) is smooth, and \(\tilde{H} := H(x, \frac{4}{7}t) \) is the desired homotopy for \(f \sim h \). \(\Box \)

Exercise 37 (1.6.3). Every connected manifold \(X \) is **arcwise connected**, i.e. \(\forall x_0, x_1 \in X, \exists f : I \to X \) smooth with \(f(0) = x_0, f(1) = x_1 \).

Solution) We first note that arcwise connectedness \((x_0 \sim x_1) \) is an equivalence condition since \(x_0 \sim x_1 \Leftrightarrow f_0 \sim f_1 \) where \(f_0 : \{\ast\} \to X, \ast \mapsto x_0, f_1 : \{\ast\} \to X, \ast \mapsto x_1 \), and homotopy is an equivalence relation. By going through the local parametrizations, it is easy to show that arcwise connected components are clopen in \(X \), and hence if \(X \) is connected it is arcwise connected. \(\Box \)

Exercise 38 (1.6.7). The antipodal map \(\alpha : S^k \to S^k, x \to -x \) is homotopic to the identity if \(k \) is odd.

Solution) Note that for any fixed \(\theta \in \mathbb{R} \), the map \(L_\theta : \mathbb{R}^2 \to \mathbb{R}^2 \) given by multiplying the matrix

\[
\begin{bmatrix}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{bmatrix}
\]

preserves the norm: i.e. \(\| (x,y) \| = \| L(x,y) \| \). So, for \(S^{2k-1} \subset \mathbb{R}^{2k} \), the map \(L := L_{\pi t} \times \ldots \times L_{\pi t} : \mathbb{R}^{2k} \times I \to \mathbb{R}^{2k} \) is the smooth homotopy. \(\Box \)
Exercise 40 (1.6.9). Let $\rho : \mathbb{R} \to \mathbb{R}$ be a function with $\rho(s) = 1$ if $|s| < 1$, $\rho(s) = 0$ if $|s| > 2$, and define $f_t : \mathbb{R} \to \mathbb{R}$ by $f_t(x) = x\rho(tx)$. This is a counterexample to all the parts of the stability theorem when X is not compact.

Solution) We simply need verify. $f_0(x) = x\rho(0) = x$, hence f_0 is a diffeomorphism and any submanifold of \mathbb{R} is transversal to identity. Now, for any $t > 0$, note that $|tx| > 2$ for all $|x| > 2/|t|$, so f_t cannot be local diffeomorphism/immersion/submersion/embedding/diffeomorphism. And for $|x| > 2/|t|$, $f_t(x) = 0$, so clearly, $\{0\}$ is not transversal to f_t. □

Exercise 41 (1.6.10). A deformation of a submanifold $Z \subset Y$ is a smooth homotopy $i_t : Z \to Y$ where i_0 is the inclusion map and each i_t is an embedding (and thus, $Z_t = i_t(Z)$ is a smoothly varying submanifold of Y with $Z_0 = Z$). If Z is compact, then any homotopy i_t of its inclusion map is a deformation for small t.

Solution) Since Z is compact, embedding is stable class. □

1.7 Sard’s Theorem and Morse Functions

Exercise 42 (1.7.5). Exhibit a smooth map $f : \mathbb{R} \to \mathbb{R}$ whose set of critical values is dense.

Solution) From [Exercise 1.1.18], there is a function $g : \mathbb{R} \to \mathbb{R}$ such that $g(x) = 1$ if $|x| \leq 1/4$ and $g(x) = 0$ if $|x| \geq 1/2$. Now, write $\mathbb{Q} = \{q_1, q_2, \ldots\}$, and then for $i \in \mathbb{N}$, define $g_i : \mathbb{R} \to \mathbb{R}$ by $g_i(x) = q_ig(x - i)$. Now define $f := \sum_i g_i$, then all the rationals are critical values for f and dense in \mathbb{R}.

Remark: Measure zero implies empty interior, but the converse is false. □

Exercise 43 (1.7.6). The sphere S^k is simply connected if $k > 1$.

Solution) Since $\dim S^1 < \dim S^k$ ($k > 1$), $p \in S^k$ is a regular value iff $p \notin f(S^1)$. That is, Sard’s Theorem implies that $f(S^1)$ is measure zero in S^k, hence $\exists p \notin f(S^1)$. Now under $S^k - \{p\} \simeq \mathbb{R}^k$, and with \mathbb{R}^k being contractible, $f(S^1)$ is homotopic to a constant map. □

Exercise 44 (1.7.8). Analyze the critical behavior at the origin in the following functions:

a. $f(x, y) = x^2 + 4y^3$

b. $f(x, y) = x^2 - 2xy + y^2$
c. $f(x, y) = x^2 + y^4$

d. $f(x, y) = x^2 + 11xy + y^2/2 + x^6$

e. $f(x, y) = 10xy + y^2 + 75y^3$

Solution) In the order of nondegenerate?/isolated?/local min or max?(non strict)?, we have:

a. N/N/N, b. N/N/Y(min), c. N/Y/Y(min), d. Y/Y/N, e. Y/Y/N □

Exercise 45 (1.7.11, 12). If $a \in \mathbb{R}^n$ is a non degenerate critical point of $f : \mathbb{R}^n \to \mathbb{R}$, there exists a local coordinate system (x_1, \ldots, x_n) around a such that

\[f = f(a) + \sum_{i=1}^{n} \epsilon_i x_i^2, \quad \epsilon_i = \pm 1 \]

And hence derive the usual second derivative test.

Solution) Note that Hessian matrix is always real symmetric and hence diagonalizable by orthogonal matrix P. Let H be Hessian matrix of f at a, and P be the orthogonal matrix that diagonalizes H. Morse Lemma gives us local coordinates $x^\prime := (x_1^\prime, \ldots, x_n^\prime) : \mathbb{R}^n \to \mathbb{R}^n$ around a such that $f = f(a) + x^\prime H x^\prime$. Then $x^\prime := (x_1^\prime, \ldots, x_n^\prime) := P^T x^\prime$ is a new local coordinates around a such that $f = f(a) + x^\prime P^T H P P^T x^\prime = f(a) + x^\prime (P^T H P) x^\prime$. Then,

\[f = f(a) + \sum_{i=1}^{n} \lambda_i x_i^2, \quad \lambda_i \text{’s are eigenvalues of } H \]

Finally, let $\phi : \mathbb{R}^n \to \mathbb{R}^n$ be defined by $(y_1, \ldots, y_n) \mapsto (\sqrt{\lambda_1} |y_1|, \ldots, \sqrt{\lambda_n} |y_n|)$, and $x := (x_1, \ldots, x_n) := g \circ x^\prime$ be the new local coordinates around a. Then

\[f = f(a) + \sum_{i=1}^{n} \epsilon_i x_i^2, \quad \epsilon_i = \pm 1 \]

as desired, and since $(x_1, \ldots, x_n)(a) = 0$ the second derivative test immediately follows. □

Exercise 46 (1.7.14). Check that the "height function" $(x_1, \ldots, x_k) \mapsto x_k$ on the sphere S^{k-1} is a Morse function with two critical points, the poles (one max, one min).

Solution) Let $f : S^{k-1} \to \mathbb{R}$ be the restriction of the projection $\pi : \mathbb{R}^k \to \mathbb{R}$, $(x_1, \ldots, x_k) \mapsto x_k$. Then for $x \in S^{k-1}$, $df_x : T_x(S^{k-1}) \to \mathbb{R}$ is the restriction of $d\pi_x = \pi$. Thus, $x \in S^{k-1}$ is a critical value iff $T_x(S^{k-1}) = \mathbb{R}^{k-1} \times \{0\}$. Since, $S^{k-1} = g^{-1}(1)$ where $g : x \mapsto \|x\|^2$, $T_a(S^{k-1}) = \ker(x \mapsto 2a^\top x)$, $T_a(S^{k-1}) = \mathbb{R}^{k-1} \times \{0\}$ exactly when $a = (0, \ldots, 0, 1) := N$ or $(0, \ldots, 0, -1) := S$. Now, $\phi_{\pm} : \mathbb{R}^{k-1} \supset B_1(0) \to \mathbb{R}$, $x \mapsto x \times \pm \sqrt{1 - \|x\|^2}$ are local parametrizations of N, S. And calculating $H(f \circ \phi_{\pm})_0$, we have $-I$ (hence max), and for the $-$ case we have I.

Exercise 47 (1.7.16). Let $U \subset \mathbb{R}^k$ open, $f : U \to \mathbb{R}$ smooth, and $H(x)$ be the Hessian of f for $x \in U$. Then f is Morse if and only if

\[\det(H)^2 + \sum_{i=1}^{k} \left(\frac{\partial f}{\partial x_i} \right)^2 > 0 \text{ on } U \]
Solution) $x \in U$ is a critical point of f iff $\nabla f = 0$, and hence iff $\sum_{i=1}^{k} \left(\frac{\partial f}{\partial x_i} \right)^2 = 0$. The rest is follows immediately from definition of Morse. □

Exercise 48 (1.7.17,18). (Stability of Morse Functions) Suppose f_t is a homotopic family of functions on \mathbb{R}^k. Show that if f_0 is Morse in some neighborhood f a compact set K, then so is every f_t for t sufficiently small. And thus, Morse function is stable class.

Solution) Let $U \subset \mathbb{R}^k$ be open containing K such that $f_0 : U \to \mathbb{R}$ is Morse. Now, denote the Hessian of f_t at x by $Hf_t|_x$, and define $h : \mathbb{R}^k \times I \to \mathbb{R}$ by $(x,t) \mapsto \det(Hf_t|_x)^2 + \sum_{i=1}^{k} \left(\frac{\partial f_t}{\partial x_i} \right)^2$.

Clearly, h is smooth, and by [Exercise 1.7.16], we know that $h > 0$ on $U \times \{0\}$, hence on $K \times \{0\}$. Since $K \times \{0\}$ is compact, $h \geq 2\delta$ for some $\delta > 0$. By continuity of h, there exists an open set $U' \supset K \times \{0\}$ such that $h > \delta$ on U'. By Tube Lemma, $\exists \epsilon > 0$ such that $h > \delta$ on $K \times [0,\epsilon]$. Using continuity of h again, for any fixed $t \in [0,\epsilon]$ there exists open $V \supset K$ such that $h > 0$ on $V \times \{t\}$, as desired.

Now let X be a compact manifold, $f_0 : X \to \mathbb{R}$ Morse, and f_t homotopic family of functions. Suppose for any $x \in X$, there exists U_x, neighborhood of x, and $\epsilon_x > 0$ such that f_t is Morse on U_x for $t \in [0,\epsilon_x]$; then $\bigcup_x U_x$ form an open over of X, so choosing a finite sub cover $U_{x_1} \cup \cdots \cup U_{x_n}$, we have that f_t is Morse on X for any $t \in [0, \min(\epsilon_{x_1}, \ldots, \epsilon_{x_n})]$. Existence of U_x and ϵ_x is given by [Exercise 1.7.17]: for $\phi : V_x \to X$ local parametrization around x with $\phi(0) = x$, set $U_x = \phi(B_\epsilon(0))$ where $B_\epsilon(0) \subset V_x$. □

1.8 Embedding Manifolds in Euclidean Space

A few practice with tangent bundles:

Exercise 49 (1.5.2). Let $g : X \to \mathbb{R}$ be smooth, everywhere-positive. Then the map $f : T(X) \to T(X)$ given by $(x,v) \mapsto (x,g(x)v)$ is smooth.

Solution) If $m : \mathbb{R} \times \mathbb{R}^N \to \mathbb{R}^N$ is scalar multiplication, $\Delta : \mathbb{R}^N \to \mathbb{R}^N \times \mathbb{R}^N$ diagonal map, then f is just restriction of $(\text{Id} \times m) \circ (\text{Id} \times g \times \text{Id}) \circ (\Delta \times \text{Id})$. □

Exercise 50 (1.5.3,4). $T(X \times Y)$ is diffeomorphic to $T(X) \times T(Y)$. $T(S^1)$ is diffeomorphic to $S^1 \times \mathbb{R}$.

Solution) First statement is immediate from $T_{(x,y)}(X \times Y) = T_x(X) \times T_y(Y)$. The map $(x,v) \mapsto (x,||v||)$ is a diffeomorphism of $T(S^k)$ and $S^1 \times \mathbb{R}$. □

Exercise 51 (1.5.6). A vector field \vec{v} on a manifold X in \mathbb{R}^N is a smooth map $\vec{v} : X \to \mathbb{R}^N$ such that $\vec{v}(x) \in T_x(X)$. Equivalently, a vector field \vec{v} on X is a cross section of $T(X)$—i.e. a smooth map $\vec{v} : X \to T(X)$ such that $p \circ \vec{v}$ is identity on X. Lastly, $x \in X$ is zero of a vector field \vec{v} if $\vec{v}(x) = 0$.

Solution) (Just definitions)
Exercise 52 (1.5.7,8). If \(k \) is odd, there exists a nonvanishing vector field \(\vec{v} \) on \(S^k \). If \(S^k \) has a nonvanishing vector field \(\vec{v} \), then its antipodal map is homotopic to the identity.

Solution) If \(k \) is odd, then the map \((x_1, \ldots, x_{k+1}) \mapsto (-x_2, x_1, -x_4, x_3, \ldots, -x_{k+1}, x_k) \) is a (linear) smooth map, i.e. a nonvanishing vector field on \(S^k \). Now, let \(\vec{v} \) is a nonvanishing vector field on \(S^k \), and WLOG \(\|\vec{v}(x)\| = 1 \), \(\forall x \in S^k \) (define new vector field by \(x \mapsto \vec{v}(x)/\|\vec{v}(x)\| \)), and thus \(\vec{v} : S^k \to S^k \) smooth and \(x \perp \vec{v}(x) \). Now, \(H : S^k \times I \to S^k \) defined by \((x, t) \mapsto x \cos \pi t + \vec{v}(x) \sin \pi t \) is a homotopy between the identity and antipodal map. \(\square \)
2 Chapter 2. Transversality and Intersection

2.1 Manifolds with Boundary

Exercise 53 (Made-up). Let \(f : X \to Y \) be a smooth map of manifolds with boundary, \(Z \subset X \) a submanifold with boundary, and define \(g := f|_Z \). Then for \(x \in Z \), \(dg_x : T_x(Z) \to T_{f(x)}(Y) \) is equal to \(df_x|_{T_x(Z)} \).

Solution) The proof reads exactly like [Exercise 17]. \(\square \)

Exercise 54 (2.1.2). Let \(f : X \to Y \) be a diffeomorphism of manifolds with boundary. Then \(\partial f \) maps \(\partial X \) diffeomorphically onto \(\partial Y \).

Solution) A diffeomorphism \(f : X \to Y \) is locally equivalent to \(U \to V \) where \(U \subset \mathbb{R}^k \). So, it follows that \(\partial f(x) \in \partial Y \) if and only if \(x \in \partial X \). \(\square \)

Exercise 55 (2.1.3). \(S := [0,1] \times [0,1] \) is not a manifold with boundary.

Solution) Suppose \(S \) is a manifold with boundary, then \(s = (0,0) \in S \) has a neighborhood \(U \subset \mathbb{R}^2 \) diffeomorphic to \(V \subset \mathbb{R}^2 \). Let \(f : U \to V \) be the diffeomorphism, and shrinking if \(U \) is necessary, let \(F : \tilde{U} \to \mathbb{R}^2 \) be the smooth extension of \(f \) where \(U \subset \tilde{U} \subset \mathbb{R}^2 \). Then \(dF_s \) is an isomorphism.

Now, note that \(\partial U \) maps to \(\partial \mathbb{R}^2 \), so if \(F = (F_1,F_2) \) then \(F_2(x,0) = 0 = F_2(0,y) \) for any \((x,0),(0,y) \in U \). Thus, \(\frac{\partial F_2}{\partial x}(s) = 0 \) an \(\frac{\partial F_2}{\partial y}(s) = 0 \). But this implies that \(dF_s(e_1), dF_s(e_2) \in \mathbb{R} \times \{0\} \) and thus not linearly dependent. \(\square \)

Exercise 56 (2.1.4). The solid hyperboloid defined by \(x^2 + y^2 - z^2 \leq a \) is a manifold with boundary.

Solution) Define \(\pi : \mathbb{R}^3 \to \mathbb{R} \) by \((x,y,z) \mapsto a - (x^2 + y^2 - z^2) \). Since \(a > 0 \), it is easily checked that \(0 \) is regular value of \(\pi \). Hence, \(\pi^{-1}((0,\infty)) \) is a manifold with boundary. \(\square \)

Exercise 57 (2.1.7). Let \(X \) be a manifold with boundary, \(x \in \partial X \), \(\phi : U \to X \) local parametrization with \(\phi(0) = x \) (so \(d\phi_0 : \mathbb{R}^k \to T_x(X) \) is isomorphism). We define the upper half space \(H_x(X) \) in \(T_x(X) \) by \(H_x(X) := d\phi_0(H^k) \). \(H_x(X) \) is independent of the choice of parametrization.

Solution)

Exercise 58 (2.1.8).

Solution)